Sharing the Benefits

How the Economics of Carbon Capture and Storage Projects in California Can Serve Communities, the Economy and the Climate

Economics of CCS in California

Ben Grove George Peridas

June 23rd, 2023

CA TF

CLEAN AIR TASK FORCE Livermore National Laboratory

Backdrop and Context

- CCS and CDR necessary to meet California's climate goals
- Recent legislation (SB 905) and upcoming rulemakings
 - Carbon Capture, Removal, Utilization, and Storage Program (CARB)
 - Standards for fair and reasonable compensation for owners of surface, mineral, and subsurface rights (CNRA)
- Considerable project activity due to federal and state incentives
- Landowners and farmers considering geologic CO₂ storage

The report is NOT:

- A cost lookup table!
- Condoning any individual project or project type

Presentation Outline

- Key findings and results
- Capture cost overview
- Transportation cost overview
- Storage cost overview
- Case studies
- Conclusions and implications for policy makers, community members, landowners and other stakeholders

Key Findings

- Incentives (e.g., 45Q, LCFS) are essential for project viability
- Projects eligible for both 45Q and LCFS hold meaningful potential for local benefits
- Projects not eligible for LCFS face challenging economics
- Project viability and benefit potential depend heavily on:
 - CO₂ flue gas stream concentration
 - The ability to use CO₂ pipelines or marine transport
 - Proximity to good geologic storage
- Trucking and railing CO₂ are pipeline alternatives
 - Often at a sizeable cost
 - Still within reasonable policy support ranges

Key Findings cont'd.

Project specifics and local factors can have a distinct effect on costs:

- Plant location, age and configuration
- Access to low-cost energy
- Challenging pipeline routings
- Supply-chain constraints and inflation
- Several project classes of projects are viable now and offer a potentially sizeable up-side (double \$/tCO₂ digits) for landowners and host communities
- Broader project acceptance and proliferation would result from a compensation structure that grows or shrinks commensurate with actual project revenues

	UNDER LOW END CAPTURE COSTS		UNDER HIGH END CAPTURE COSTS	
Case Study	Project Surplus (\$/tCO₂)	Project Deficit (\$/tCO2)	Project Surplus (\$/tCO ₂)	Project Deficit (\$/tCO2)
Ethanol	114		93	
Refinery (FCC)	87		33	
Refinery (SMR)	90		17	
NGCC		-27		-104
Cement		-155		-224

A	SENSITIVITY	UNDER LOW/HIGH END CAPTURE COSTS		
CASE STUDY		Project Surplus (\$/tCO ₂)	Project Deficit (\$/tCO ₂)	
Ethanol	Use pipeline instead of barge	(93 →) 106		
Refinery (SMR) #1	Use tanker trucks instead of pipeline	(17→)	-45	
Refinery (SMR) #2	Use barges instead of pipeline	(90→) 76		
Refinery (SMR) #3	Increase incentive period to 20 years	(17 →) 24		
Refinery (SMR) #4	Increase LCFS credit price to \$175/tCO ₂	(17 →) 57		
Refinery (SMR) #5	Increase target rate of return to 15%	(17→)	-23	
NGCC	Increase incentive period to 20 years		(-104→) -97	
Cement	Use pipeline instead of rail		(-224→) -84	

Incentives and Revenue Sources

(Excluding project outputs, commodities and products)

Federal 45Q Tax Credit

- \$50 to \$85/tCO₂ for saline storage of industrial CO₂
- \$50 to \$180/tCO₂ for direct air capture
- 12 years
- Inflation adjusted
- Commence construction before Jan 1, 2033
- Transferable
- Direct payment option

Low Carbon Fuel Standard

- For projects that lower California's transportation fuels carbon intensity
- Variable price: ~\$60-200/tCO₂ in past 5 years
- Credit price expected to rise in response to planned tightening of LCFS targets
- Projects must comply with CARB CCS Protocol (2018)

Capture Cost Overview

APPLICATION	ASSUMED ANNUAL EMISSION RATE (tCO2/y)	COST RANGE (\$/tCO₂ CAPTURED)	SOURCES
Cement Plants	1,000,000	55-120	GPI (\$55-69), NETL (\$64), IEA (\$60-120), industry survey (81), NPC (\$64-95)
Refinery FCCs	1,000,000	55-150	GPI (\$55-71), industry survey (\$100), (\$97-150 as- suming only 374,000 tCO2/y)
Refinery SMRs	1,000,000	50-111	IEA (\$50-80), industry survey (\$111), NPC (\$61-88)
NGCCs	1,000,000	76-140	GPI (\$76-104), Rubin/Herzog (\$74 avg), industry survey (\$132), NPC (\$93-140)
Ethanol Plants	500,000	16-35	GPI (\$16-19), NETL (\$17-37), IEA (\$25-35), industry survey (\$30), NPC (\$24-34)

- Capture costs derived from literature and industry surveys
- Cost ranges based on amine absorption technology
- Costs generally higher for more dilute streams (e.g., NGCCs) and lower for highly concentrated streams (e.g., ethanol)

Transportation Cost Overview

• Pipeline

- Pipeline cost estimates generated using NETL Transportation Cost Model
- Pipeline is by far the most economically favorable mode of transportation
- Generic 60-mile pipeline transporting ~1MT/yr has a CapEx of ~\$1 million per mile and an OpEx of ~\$1/ton

Rail

- Rail cost estimates based on recent analysis by Corey Myers and Wenqin Li at LLNL
- Rail transportation can be feasible where no other options exist, but at a significant cost
- Rail transportation costs start slightly above \$100/ton, regardless of whether tankers or intermodals are used

Transportation Cost Overview cont'd.

• Truck

- Truck cost estimates based on recent analysis by Corey Myers and Wenqin Li at LLNL
- Truck transportation can be feasible over shorter distances (i.e., shorter than 100 miles)
- Costs for intermodals start around \$50/ton for distances shorter than 100 miles

Barge

- Cost estimates for barge solely from industry survey of market participants due to limited published literature
- Can be feasible and cost-effective where suitable waterways are available
- ~\$25 million CapEx for each barge, OpEx ~\$5-7/ton depending on degree of utilization of each barge

Storage Cost Overview

- Storage cost estimates generated using NETL's Saline Storage Cost Model
- Geologic inputs gathered from WestCARB for three indicative storage locations:
 - Near Stockton (Southern Sacramento Basin)
 - Near Modesto (Northern San Joaquin Basin)
 - In Kern County (Southern San Joaquin Basin)

- For a typical project injecting 1 MT/year across 3 injection wells over 12 years:
 - CapEx just under ~\$100m
 - OpEx ~\$8/ton
 - Acquisition of 3D seismic for characterization and periodic surveys for monitoring plume constitute significant portion of total cost (~20-30%)
 - Modeled costs are higher than DOE's ~\$7-13/ton estimates

Case Studies – Purpose & General Assumptions

Cost estimates were applied to indicative project case studies around California to demonstrate the effect of various factors on project costs and economics.

- A simple, conservative cash-flow calculation was used:
 - Capital outlay over first 3 years of project, revenues accruing thereafter
 - A 45Q window of 12 years, 12-year project operation lifetime
 - LCFS credit price of \$125/tCO₂
 - Annual insurance expenditure equal to 3% of revenues
 - Target cash-on-cash RoR of 8%
 - Numbers presented are pre-tax
 - 8% of issued LCFS credits paid into LCFS buffer account
 - 6x terminal enterprise value

Case Study 1: Capture from Corn Ethanol Plant in Stockton

• Significance: low-hanging fruit due to very high purity CO₂ stream.

- 500,000 tCO₂/yr
- Geologic storage nearby in the Delta (10mi by barge)
- Eligible for both LCFS and 45Q
- Sensitivity: Barge vs pipeline transportation
- Conclusions: Low capture costs and both 45Q and LCFS eligibility makes ethanol CCS comfortably economical.
- Project surpluses range from \$93 to 114/tCO₂.

Case Study 2: Capture from Refinery SMR and FCC in Bay Area

- Significance: 5 refineries in Bay Area, major CO₂ sources. SMRs, FCCs emit high-concentration CO₂.
 - 1,000,000 tCO₂/yr
 - Geologic storage in the Delta (60mi by pipeline)
 - Eligible for both LCFS and 45Q
- Sensitivities: pipeline vs barge vs tanker truck; longer incentive period; higher LCFS prices; higher rate of return.
- **Conclusions:** Such high-concentration refinery components good CCS targets, likely economical with sizeable margins for local benefits.
- Projects surpluses range from **\$17 to 90/tCO**₂.

Case Study 3: Capture from Natural Gas Combined Cycle Power Plant in Tracy

- Significance: NGCCs common in CA. Under high renewables, some plants still needed for dispatchable/baseload power.
 - 1,000,000 tCO2/yr
 - Storage near Modesto (35mi by pipeline)
 - Only eligible for 45Q
- Sensitivity: Longer 45Q period (20 years vs. 12)
- Conclusion: Challenging economics: dilute CO₂ concentration, no incentives beyond 45Q.
- Viability will depend on future policy developments.
- Project deficits range from -\$104 to -\$27/tCO₂.

Case Study 4: Capture from Cement Plant in Mojave/Tehachapi Area

- Significance: CA one of largest U.S. cement produces. 7 operating plants emit ~ 10 million tCO₂/yr. CCS is one of few means to reduce emissions.
 - 1,000,000 tCO₂/yr
 - Geologic storage in Kern County (60mi by rail)
 - Only eligible for 45Q
- Sensitivity: Pipeline vs. rail transportation
- **Conclusions:** Challenging economics due to lack of incentives beyond 45Q. Viability will depend on future policy developments.
- Project deficits range from -\$224 to -\$155/tCO₂.

Key Findings

- Incentives (e.g., 45Q, LCFS) are essential for project viability
- Projects eligible for both 45Q and LCFS hold meaningful potential for local benefits
- Projects not eligible for LCFS face challenging economics
- Project viability and benefit potential depend heavily on:
 - CO₂ flue gas stream concentration
 - The ability to use CO₂ pipelines or marine transport
 - Proximity to good geologic storage
- Trucking and railing CO₂ are pipeline alternatives
 - Often at a sizeable cost
 - Still within reasonable policy support ranges

Key Findings cont'd.

Project specifics and local factors can have a distinct effect on costs:

- Plant location, age and configuration
- Access to low-cost energy
- Challenging pipeline routings
- Supply-chain constraints and inflation
- Several project classes of projects are viable now and offer a potentially sizeable up-side (double \$/tCO₂ digits) for landowners and host communities
- Broader project acceptance and proliferation would result from a compensation structure that grows or shrinks commensurate with actual project revenues

Implications

For policy makers

- Incentive programs work!
- Coverage and eligibility is not as broad across sectors and project types as it needs to be
- Successes need to be replicated

For developers

- Many of the pieces that have traditionally been lacking are now in place
- Time of opportunity: CCS/CDR going from niche towards mainstream
- New ways to share project benefits equitably pave the way to project proliferation
- For landowners, community members and local stakeholders
 - CCS/CDR projects can coexist with existing activities and provide meaningful revenue streams
 - Pore space lease structures and individual project details matter